1,693 research outputs found

    Bayesian Models Applied to Cyber Security Anomaly Detection Problems

    Get PDF
    Cyber security is an important concern for all individuals, organisations and governments globally. Cyber attacks have become more sophisticated, frequent and dangerous than ever, and traditional anomaly detection methods have been proved to be less effective when dealing with these new classes of cyber threats. In order to address this, both classical and Bayesian models offer a valid and innovative alternative to the traditional signature-based methods, motivating the increasing interest in statistical research that it has been observed in recent years. In this review, we provide a description of some typical cyber security challenges, typical types of data and statistical methods, paying special attention to Bayesian approaches for these problems

    Scaling of a large-scale simulation of synchronous slow-wave and asynchronous awake-like activity of a cortical model with long-range interconnections

    Full text link
    Cortical synapse organization supports a range of dynamic states on multiple spatial and temporal scales, from synchronous slow wave activity (SWA), characteristic of deep sleep or anesthesia, to fluctuating, asynchronous activity during wakefulness (AW). Such dynamic diversity poses a challenge for producing efficient large-scale simulations that embody realistic metaphors of short- and long-range synaptic connectivity. In fact, during SWA and AW different spatial extents of the cortical tissue are active in a given timespan and at different firing rates, which implies a wide variety of loads of local computation and communication. A balanced evaluation of simulation performance and robustness should therefore include tests of a variety of cortical dynamic states. Here, we demonstrate performance scaling of our proprietary Distributed and Plastic Spiking Neural Networks (DPSNN) simulation engine in both SWA and AW for bidimensional grids of neural populations, which reflects the modular organization of the cortex. We explored networks up to 192x192 modules, each composed of 1250 integrate-and-fire neurons with spike-frequency adaptation, and exponentially decaying inter-modular synaptic connectivity with varying spatial decay constant. For the largest networks the total number of synapses was over 70 billion. The execution platform included up to 64 dual-socket nodes, each socket mounting 8 Intel Xeon Haswell processor cores @ 2.40GHz clock rates. Network initialization time, memory usage, and execution time showed good scaling performances from 1 to 1024 processes, implemented using the standard Message Passing Interface (MPI) protocol. We achieved simulation speeds of between 2.3x10^9 and 4.1x10^9 synaptic events per second for both cortical states in the explored range of inter-modular interconnections.Comment: 22 pages, 9 figures, 4 table

    Quantifying and Optimizing Photocurrent via Optical Modeling of Gold Nanostar-, Nanorod-, and Dimer-decorated MoS2 and MoTe2

    Get PDF
    Finite element simulations through COMSOL Multiphysics were used to optically model systems composed of Mo dichalcogenide lay- ers (MoTe2 and MoS2) and Au nanoparticles (spherical dimers, nanorods, and nanostars) to understand how their fundamental material properties as well as their interactions affect the photocurrent response. The absorption cross sections of the various Au nanoparticles linearly increase with respect to their increasing dimensions, hence being ideal tunable systems for the enhancement of the electric field in the dichalcogenide layers under visible and near infrared. The photocurrent through the MoTe2 and MoS2 substrates was enhanced by the addition of Au nanoparticles when the plasmonic response was localized in the area of the particle in contact with the substrate. Based on these findings, the use of Au nanoparticles can greatly improve the unique photocurrent properties of Mo dichalcogenides; how- ever, nanoparticle orientation and size must be considered to tune the enhancement at the specific wavelengths. This computational work provides useful design rules for the use of plasmonic nanomaterials in photocatalytic and photocurrent enhancement of transition metal dichalcogenides

    Spiraling Solitons: a Continuum Model for Dynamical Phyllotaxis and Beyond

    Full text link
    A novel, protean, topological soliton has recently been shown to emerge in systems of repulsive particles in cylindrical geometries, whose statics is described by the number-theoretical objects of phyllotaxis. Here we present a minimal and local continuum model that can explain many of the features of the phyllotactic soliton, such as locked speed, screw shift, energy transport and, for Wigner crystal on a nanotube, charge transport. The treatment is general and should apply to other spiraling systems. Unlike e.g. Sine-Gornon-like systems, our solitons can exist between non-degenerate structure, imply a power flow through the system, dynamics of the domains it separates; we also predict pulses, both static and dynamic. Applications include charge transport in Wigner Crystals on nanotubes or A- to B-DNA transitions.Comment: 8 Pages, 6 Figures, Phys Rev E in pres

    THE DEVELOPMENT OF CHILDREN’S IDENTIFICATION: A CROSS-CULTURAL COMPARISON BETWEEN BULGARIA, ITALY AND UKRAINE

    Get PDF
    The study presented here analyses the development of self-categorisation, national, European and local identification of Bulgarian, Ukrainian and Italian children and adolescents growing up in Bulgaria, Ukraine and Italy. The sample consisted of 541 children aged 6, 9, 12 and 15 years. It was found that national, European and local identifications differ in the three national groups. It is argued that the cognitive-developmental account of the development of national identification is unable to explain the patterns of findings which were obtained. The social identity theory, however, is able to explain the different patterns of importance given to the different identifications by the three national groups

    Cell Senescence, Multiple Organelle Dysfunction and Atherosclerosis

    Get PDF
    Our research is supported by national funds through FCT- Fundação para a Ciência e Tecnologia and by PROGRAMAS DE ATIVIDADES CONJUNTAS (PAC) grant numbers PTDC/MED-PAT/29395/2017 and N◦3/SAICT/2015. ARAM is supported by the CEECIND/01006/2017, funded by FCT.Atherosclerosis is an age-related disorder associated with long-term exposure to cardiovascular risk factors. The asymptomatic progression of atherosclerotic plaques leads to major cardiovascular diseases (CVD), including acute myocardial infarctions or cerebral ischemic strokes in some cases. Senescence, a biological process associated with progressive structural and functional deterioration of cells, tissues and organs, is intricately linked to age-related diseases. Cell senescence involves coordinated modifications in cellular compartments and has been demonstrated to contribute to different stages of atheroma development. Senescence-based therapeutic strategies are currently being pursued to treat and prevent CVD in humans in the near-future. In addition, distinct experimental settings allowed researchers to unravel potential approaches to regulate anti-apoptotic pathways, facilitate excessive senescent cell clearance and eventually reverse atherogenesis to improve cardiovascular function. However, a deeper knowledge is required to fully understand cellular senescence, to clarify senescence and atherogenesis intertwining, allowing researchers to establish more effective treatments and to reduce the cardiovascular disorders' burden. Here, we present an objective review of the key senescence-related alterations of the major intracellular organelles and analyze the role of relevant cell types for senescence and atherogenesis. In this context, we provide an updated analysis of therapeutic approaches, including clinically relevant experiments using senolytic drugs to counteract atherosclerosis.publishersversionpublishe
    • …
    corecore